Visualization with
Matplotlib

1. Introduction

2. Simple plots - 1

3. Simple plots - 2
4. Advance plots

5. Customizing Plots
6. Multiple Subplots

Introduction

Matplotlib is a multiplatform data visualization library built on NumPy arrays.
Matplotlib supports numerous backends and output types, which means we can count

on it to work regardless of the operating system we are using or the output format we
desire. Let's install the package first:

Matplotlib is a multiplatform data visualization library built on NumPy arrays.
Matplotlib supports numerous backends and output types, which means we can count
on it to work regardless of the operating system we are using or the output format we
desire. Let's install the package first:

package name = "matplotlib"
package name2 = "ipympl"

try:
__import__ (package name)
print(f"{package name} is already installed.")
except ImportError:
print(f"{package name} not found. Installing...")
%pip install {package name}

try:
__import__ (package name2)
print(f"{package name2} is already installed.")
except ImportError:
print(f"{package_name2} not found. Installing...")
%pip install {package name2}

matplotlib is already installed.
ipympl is already installed.

Creating interactive plots within a Jupyter notebook can be accomplished using the
%matplotlib command. Additionally, we have the option to embed graphics directly in
the notebook using inline option:

Creating interactive plots within a Jupyter notebook can be accomplished using the
%matplotlib command. Additionally, we have the option to embed graphics directly in

the notebook using inline option:

#Interactive backend
#xmatplotlib widget
#Interactive backend
#xmatplotlib ipympl
#Static backend
%matplotlib inline

Just as we use the np shorthand for NumPy , we will use some standard shorthands for
Matplotlib imports:

Just as we use the np shorthand for NumPy , we will use some standard shorthands for
Matplotlib imports:

import matplotlib as mpl

import matplotlib.pyplot as plt # a collection of functions that make matplot
import numpy as np

plt.style.use('seaborn-v@ 8-whitegrid') #plt.style.use('seaborn-whitegrid")

Just as we use the np shorthand for NumPy , we will use some standard shorthands for
Matplotlib imports:

import matplotlib as mpl

import matplotlib.pyplot as plt # a collection of functions that make matplot
import numpy as np

plt.style.use('seaborn-v@ 8-whitegrid') #plt.style.use('seaborn-whitegrid")

We can choose the style we would like from the here.

Two interfaces for the matplotlib

A feature of Matplotlib that may cause confusion is its dual interfaces: a user-friendly
functional-style state-based interface and a more powerful gbject-oriented interface.

Firstly, we create the data we would like to plot. The simplest method, plot() accept
two arrays (x and y) as inputs. It will plot y versus x as lines and/or markers.

A feature of Matplotlib that may cause confusion is its dual interfaces: a user-friendly
functional-style state-based interface and a more powerful gbject-oriented interface.

Firstly, we create the data we would like to plot. The simplest method, plot() accept
two arrays (x and y) as inputs. It will plot y versus x as lines and/or markers.

X = np.linspace(-np.pi, np.pi, 256)
C, S = np.cos(x), np.sin(x)

A feature of Matplotlib that may cause confusion is its dual interfaces: a user-friendly
functional-style state-based interface and a more powerful gbject-oriented interface.

Firstly, we create the data we would like to plot. The simplest method, plot() accept
two arrays (x and y) as inputs. It will plot y versus x as lines and/or markers.

X = np.linspace(-np.pi, np.pi, 256)
C, S = np.cos(x), np.sin(x)

X is now a array with 256 values ranging from to (included). C is the cosine (256 values)
and S is the sine (256 values).

Functional Interface

Matplotlib was initially developed as a Python alternative for MATLAB users, and
many aspects of its syntax reflect this origin. The MATLAB -style tools can be found in the
pyplot (plt) interface.

Matplotlib was initially developed as a Python alternative for MATLAB users, and
many aspects of its syntax reflect this origin. The MATLAB -style tools can be found in the
pyplot (plt) interface.

1. create a plot figure

plt.figure(figsize=(5.5, 3.5))

2. create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, S)

3. create the second panel and set current axis
plt.subplot(2, 1, 2)

plt.plot(x, C); # It is stateful!

Object-oriented interface

For more complex scenarios or when greater control over the figure is desired, the object-
oriented interface comes in handy. Instead of relying on the concept of an "active" figure
or axes, the object-oriented interface treats plotting functions as methods of explicit
Figure and Axes objects.

For more complex scenarios or when greater control over the figure is desired, the object-
oriented interface comes in handy. Instead of relying on the concept of an "active" figure
or axes, the object-oriented interface treats plotting functions as methods of explicit
Figure and Axes objects.

1. First create a grid of plots

ax will be an array of two Axes objects

fig, ax = plt.subplots(2, figsize=(5.5, 3.5))

2. Call plot() method on the appropriate object
ax[0].plot(x, S)

ax[1].plot(x, C);

In [9]: display _quiz(path+"oop.json", max_width=800)

Which of the following are examples of the object-oriented interface in Matplotlib?

(Select all that apply)
plt.xlabel('X axis') ax.plot(x, y)

ax.set_xlabel('X axis') plt.plot(x, y)

Simple plots -1

Simple line plots

To create a 2D line plot, follow these general steps:

1

. Call the plt.figure() to create a new figure. (optional for %matplotlib

inline)

2. Generate a sequence of x values usually using linspace() .

3. Generate a sequence of y values usually by substitute the = values into a function.

4. Input plt.plot(x, y, [format], **kwargs) where [format] is an (optional)

format string, and **kwargs are (optional) keyword arguments specifying the line
properties of the plot.

. Utilize plt functions to enhance the figure with features such as a title, legend,

grid lines, etc.

.Input plt.show() to display the resulting figure (this step is optional in a Jupyter

notebook).

Let's begin with a basic example where we try plotting the parabola using 5 points:

Let's begin with a basic example where we try plotting the parabola using 5 points:

plt

X
y

plt

40
35
30
25
20
15
1.0
0.5
0.0

2.0

[-2.’ '159)112]
[4,1,0,1,4]

=}5

.plot(x,y);

-10 -05

0.0

0.5

.figure(figsize=(5, 3.5))

1.0

15

20

Let's begin with a basic example where we try plotting the parabola using 5 points:

plt.figure(figsize=(5, 3.5))
X = [-2,-1,0,1,2]
y = [4,1,0,1,4]

plt.plot(x,y);

40
35
30
25
20
15
1.0
0.5

0.0
20 45 10 045 00 05 10 15 20

The sequences x and y determine the coordinates of the points in the plot and the line
is formed by connecting these points with straight lines.

The second observation suggests that if we aim to display a smooth curve, we need to
plot numerous points; otherwise, the plot will not appear smooth. Let's attempt this again,
using the NumPy function np.linspace() to create 200 points:

The second observation suggests that if we aim to display a smooth curve, we need to

plot numerous points; otherwise, the plot will not appear smooth. Let's attempt this again,

using the NumPy function np.linspace() to create 200 points:

X

40

35

3.0

25

20

1.5

1.0

0.5

0.0

= np.linspace(-2,2,200)
y = x¥*2
plt.plot(x,y);

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

20

Let's try another example with a simple sinusoid:

Let's try another example with a simple sinusoid:

In [12]: x = np.linspace(®, 10, 1000)
plt.plot(x, np.sin(x)); # let the figure and axes be created for us in the ba

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

-1.00

If we want to create a single figure with multiple lines, we can simply call the plot()
function multiple times:

If we want to create a single figure with multiple lines, we can simply call the plot()
function multiple times:

In [13]: plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x));

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

-1.00

Adjusting the plot: Line colors, styles and widths

One of the first modifications you might want to make to a plot is adjusting the line colors
and styles. The plt.plot() function accepts additional arguments that can be

employed to define these aspects. To change the color, you can use the color keyword:

One of the first modifications you might want to make to a plot is adjusting the line colors
and styles. The plt.plot() function accepts additional arguments that can be
employed to define these aspects. To change the color, you can use the color keyword:

plt.plot(x,
plt.plot(x,
plt.plot(x,
plt.plot(x,

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

-1.00

np.
np.
np.
np.

cos(x
cos(x
cos(x
cos(x

0),
1),
2),
4),

color="blue") # specify color by name
color="g") # short color code (rgbcmyk)
color="'0.75") # grayscale between 0 and 1
color=(1.0,0.2,0.3)); # RGB tuple, values 6 to 1

Similarly, the line style can be adjusted using the linestyle keyword:

In [15]:

Similarly, the line style can be adjusted using the linestyle keyword:

plt.plot(x,
plt.plot(x,
plt.plot(x,
plt.plot(x,
plt.plot(x,

X X X X

X

)

)

J

W NRrO

J

4,

linestyle="-")
linestyle="--"
linestyle="-.
linestyle=":")
tikt);

solid

dashed

dashdot

dotted

(use format string here!)

You can save some ReystrokRes by combining these Linestyle and color codes 1l

10

Finally, you can also adjust the width using linewidth keyword:

Finally, you can also adjust the width using linewidth keyword:

In [16]: plt.plot(x, np.cos(x - ©))
plt.plot(x, np.cos(x - 1), linewidth='5");

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50

-0.75

-1.00

Adjusting the plot: Axes limits

Matplotlib generally provides suitable default axes limits for your plot, but in certain

cases, having more control can be advantageous. The simplest method to fine-tune the
limits is by utilizing the plt.xlim() and plt.ylim() functions:

Matplotlib generally provides suitable default axes limits for your plot, but in certain

cases, having more control can be advantageous. The simplest method to fine-tune the
limits is by utilizing the plt.xlim() and plt.ylim() functions:

plt.plot(x, np.cos(x))

plt.xlim(-0.5, 10.5)
plt.ylim(-1.5, 1.5);

1.5
1.0
0.5

0.0

-0.5

-1.0

-1.5

10

Labeling plots

Let's take a quick look at labeling plots. Titles and axis labels are the most basic types of
labels — there are methods available to set them quickly.

Let's take a quick look at labeling plots. Titles and axis labels are the most basic types of
labels — there are methods available to set them quickly.

plt.figure(figsize=(5, 3.5))

plt.plot(x, np.sin(x), '-g', label='sin(x)') # solid green Line

plt.plot(x, np.cos(x), ':b', label="cos(x)') # dotted blue Line

plt.title("A Sin/Cos Curve", fontsize=18) # we can also specify the font s
plt.xlabel("x", fontsize=14)

plt.ylabel("sin(x)", fontsize=14)

plt.legend(fontsize=12)

plt.axis('equal’);

A Sin/Cos Curve

For more anatomy of a figure, you can refer to the following figure (which is created using
the code available here):

For more anatomy of a figure, you can refer to the following figure (which is created using

the code available here):

Anaw of a figure

O

Fi,
plt.figure

xlabel

4 Title —
@ \ plt.title —— Blue signal
Minor tick Orange il
ax.yaxis. setjlmlnn r_locator ILegend
. plt.legend
S\ O
f Ay
Major tick label o [m] erid
ax.yaxis.set_major_formatter J_..mg\ plt.grid
-] 1t.plot
o] pLt.plot |
- o o O
o o
0 L)
o1 - ® oo
{1 %88 ® g
ylabel a
plt.ylabel H u] (m] M:r)(ez;-'l]
plt.scatter
1D >
m]
Major, tick o
ax.yaxis.set_major_locator \-_D._/
Spine
Axes ax.spines
y Axis fig.subplots
ax.yaxis— T T
025055 _ 125150175
0 1

o ‘sq

2.252.502.75 32! .75

2 3 4
@(is label

Minor tick label

ax.xaxis.set_minor_formatter
plt.xlabel

Matplotlib tips

While many plt functions (Functional interface) have direct ax method (OOP interface)
equivalents (plt.plot() — ax.plot(), plt.legend() — ax.legend(), etc.), this
does not apply to all commands. Specifically, functions for setting limits, labels, and titles

undergo slight modifications. To transition between MATLAB-style functions and object-
oriented methods, implement the following changes:

Functional ooP

plt.xlabel() ax.set_xlabel()

(
pltylabel() ax.set_ylabel()
)

plt.xlim() ax.set_xlim(

plt.ylim() ax.set_ylim()

plt.title() ax.set_title()

1
(z—1)
within the range -2 to 3 with evenly spaced
points. Try to set the point at the discontinuity to

np.nan so that the point won't be plotted in
the figure for better visualization purposes.

Hint: You can use np.close(x, discontinuity, atol=threshold) function to find
the index of the point closest to the discontinuity. On the other hand y[y>threshold];
y[y<-threshold] may also be used.

Exercise 1. Try to plot the function "

In []: # Your code here

B omm e e e e e e e e e e e e e e e e e mm e — -
1. Generate an evenly-spaced grid of x-values on [-2, 3]
B omm e e e e e e e e ————
num_points = 1 000 # number of samples to plot
X = np.linspace(s , hum_points) # Linearly spaced grid
B o o o o e m e — =
2. Evaluate y =1/ (x * (x - 1)) on that grid
B omm e e e e e e e e e e e e e -
y:
B o o o o o o o e e e —
3. Remove the singularities (x = 0 and x = 1)
np.isclose(...) finds the grid points closest to each pole.
B omm e e e e e e e e e e -
mask = np.isclose(x, , atol=1e-2) | \
np.isclose(x, , atol=le-2) # boolean mask for both pol
y[mask disc] = # exclude poles fro
B omm e e e e e e e e e e e e e e e e e mm e — -

4. (Optional) Clip extremely Llarge magnitudes to improve
visual readability — anything with [y| > 1e3 is omitted.

threshold = 1le3
y[np.abs(y) > threshold] = np.nan

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(6, 4))

plot(x, y, label=r'$y = \dfrac{1}{x\,(x-1)}%$")
xlabel('x")

ylabel('y")

legend()

grid(True)

tight layout()

show()

Simple plots - 2

Simple scatter plots

Another frequently used plot type is the basic scatter plot. In this case, points are depicted
individually with a dot, circle, or other shape, rather than being connected by line
segments. It turns out that the same function can also generate scatter plots:

Another frequently used plot type is the basic scatter plot. In this case, points are depicted
individually with a dot, circle, or other shape, rather than being connected by line
segments. It turns out that the same function can also generate scatter plots:

plt.figure(figsize=(5, 3.5))

X = np.linspace(@, 10, 30)

y = np.sin(x)

plt.plot(x, y, 'o', color='black");

1.00 o0 e®
0.75
0.50
0.25 °
000 ® .
-0.25 °
-0.50
-0.75 .
-1.00 e

The third argument in the function call is a character representing the type of symbol
used for plotting. Similar to specifying options like '-' or '--' to control the line style,
marker styles also have their own set of brief string codes:

The third argument in the function call is a character representing the type of symbol
used for plotting. Similar to specifying options like '-' or '--' to control the line style,
marker styles also have their own set of brief string codes:

np.random.seed(42)

plt.figure(figsize=(5, 3.5))

for marker in ['o', '.', ',', 'x', '+', ‘'v', '"A) <ty 'y sty 'dY]:
plt.plot(np.random.random(1), np.random.random(1l), marker, color='black’,

plt.legend(fontsize=13)
plt.xlim(@, 1.8);

1.0

v h ® marker=o

08 X * marker=.

i marker=,

X marker=x

06 . ’ + marker=+

¥ marker=v

04 A marker="

n <4 marker=<

02 4 L - > marker=>
00 02 04 06 08 10 15 {qark?ﬁfs 18

¢ marker=d

For even greater versatility, these character codes can be combined with line and color
codes to plot points accompanied by a connecting line. Furthermore, the size or color of
the markers can be customized:

For even greater versatility, these character codes can be combined with line and color
codes to plot points accompanied by a connecting line. Furthermore, the size or color of
the markers can be customized:

plt.plot(x, y, '-vb', markersize=15, linewidth=4, markerfacecolor='orange', m
plt.ylim(-1.2, 1.2);

1.0

0.5

0.0

-0.5

-1.0

Scatter Plots with plt.scatter()

The main advantage of plt.scatter() over plt.plot() isits ability to generate

scatter plots where the properties of each individual point (size, face color, edge
color, etc.) can be individually controlled or mapped to data.

In [22]:

The main advantage of plt.scatter() over plt.plot() isits ability to generate
scatter plots where the properties of each individual point (size, face color, edge
color, etc.) can be individually controlled or mapped to data.

np.random.seed(42)
plt.figure(figsize=(5, 3.5))

X = np.random.randn(100)

y = np.random.randn(100)

colors = np.random.rand(100)

sizes = 1000 * np.random.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, cmap='viridis')

plt.colorbar(); # show color scale

0.8

0.6

04

0.2

Density plots

Histograms, binnings, and density plots

A basic histogram can be an excellent initial step in comprehending a dataset. We can use
plt.hist() to calculate and generate a histogram of sample data:

A basic histogram can be an excellent initial step in comprehending a dataset. We can use

plt.hist() to calculate and generate a histogram of sample data:

np.random.seed(42)
data = np.random.normal(size=1000)
plt.hist(data);

250

200

150

100

The hist() function provides numerous options for fine-tuning both the computation
and display. Here's an example of a more customized histogram:

The hist() function provides numerous options for fine-tuning both the computation
and display. Here's an example of a more customized histogram:

In [24]: plt.hist(data, bins=30, density=True, alpha=0.5, color='steelblue', edgecolor
X = np.linspace(-4,4,100)
y = 1/(2*np.pi)**0.5 * np.exp(-x**2/2)
plt.plot(x,y,'b',alpha=0.8);

04

0.3

0.2

0.1

0.0

Advance plots

Filling the area between lines

Sometimes, it may be useful to fill areas between plots using plt.fill between() :

Sometimes, it may be useful to fill areas between plots using plt.fill between() :

X = np.linspace(9, 2*np.pi, 1000)
plt.plot(x, np.sin(x), 'r")

plt.plot(x, np.cos(x), 'g")
plt.fill between(x, np.cos(x), np.sin(x), color='red', alpha=0.1);

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

-1.00

Plot in polar coordinate

To plot the figure in different coordinate system, we can use projection option of the
plt.axes() method:

To plot the figure in different coordinate system, we can use projection option of the
plt.axes() method:

t = np.linspace(@, 2*np.pi, 64)

plt.figure(figsize=(5, 3.5))

plot in polar coordinates

plt.axes(projection="polar")

plt.plot(t, np.sin(t), '-');

Set ticks for polar coordinate

plt.xticks([0@, np.pi/2, np.pi, 3*np.pi/2], ['@", '$\pi/2%', '$\pi%$', '$3\pi/2
plt.yticks([-0.5,0,0.5,1]);

mf2

10
0.5

3nf2

Note that we would expect that a radius of 0 designates the origin, and a negative radius
is reflected across the origin; Specifically, the polar coordinates and should represent the
same point. To implement this behavior, use the code below:

Note that we would expect that a radius of 0 designates the origin, and a negative radius
is reflected across the origin; Specifically, the polar coordinates and should represent the
same point. To implement this behavior, use the code below:

t = np.linspace(@, 2*np.pi, 64)

r = np.sin(t)

plt.figure(figsize=(5, 3.5))

plot in polar coordinates

plt.axes(projection="polar")

plt.plot(t+(r<@)*np.pi, np.abs(r), '-")

Set ticks for polar coordinate

plt.xticks([Q, np.pi/2, np.pi, 3*np.pi/2], ['@"', "$\pi/2%', '$\pi$', '$3\pi/2

n/2

1.0
06 0.8

32

Exercise 2: Try to plot the sin(2x) function in
the range & = |—r, 7] and fill the area

between the curve and the x-axis with the color
blue and alpha=0.25 as follows

You can use the following code to set the ticks:

radian_multiples = [-1, -1/2, 0, 1/2, 1]

radians = [n * np.pi for n in radian_multiples]

radian_labels = ['π', '$-\pi/2%', '@', '$\pi/2%', 'π']
plt.xticks(radians, radian_labels);

Your code here

X = np.linspace(-np.pi, np.pi, 1 000) # dense grid for smooth curve

plt.figure(figsize=(6, 4))
plt.plot(__ ,) # curve
plt.fill between(, , , color="blue', alpha=0.25) # shaded regio

Your code here

X = np.linspace(-np.pi, np.pi, 1 000) # dense grid for smooth curve

plt.figure(figsize=(6, 4))
plt.plot(__ ,) # curve
plt.fill between(, , , color="blue', alpha=0.25) # shaded regio

radian_multiples = [-1, -1/2, 0, 1/2, 1]
radians = [n * np.pi for n in radian_multiples]
radian_labels = ["$-\\pi$', "$-\\pi/2%$', '@', '$\\pi/2%$', '$\\pi$']

plt.xticks(radians, radian_labels)

plt.xlabel('x")

plt.ylabel('sin(2x)")

plt.title(r'$y = \sin(2x)$ on $[-\pi, \pil$')
plt.axhline(@, color='black', linewidth=0.8) # x-axis
plt.grid(True)

plt.tight layout()

plt.show()

Multiple Subplots

Sometimes, it's helpful to look at different pieces of data next to each other. To do this,
Matplotlib uses something called subplots. Subplots are basically smaller graphs that
can live together in one bigger graph. These smaller graphs could be little graphs placed
inside a larger one, a grid of many graphs, or they could be arranged in other more
complicated ways.

plt.subplots()

Aligned rows or columns of subplots are a common enough requirement that
Matplotlib has several convenience routines that make it easy to create them.

plt.subplots() is the easiest tool to use. Instead of creating a single subplot, this

function creates a complete grid of subplots in one line, and returns them as a
NumPy array. The arguments are the number of rows and the number of columns.

Let's create a grid of subplots, and adjust the spacing between them:

Let's create a grid of subplots, and adjust the spacing between them:

fig, ax = plt.subplots(2, 3)
fig.subplots _adjust(hspace=0.4, wspace=0.4)
for 1 in range(2):
for j in range(3):
ax[i, j].text(e.5, 0.5, str((i, j)), fontsize=18, ha='center', va='ce

10 1.0 10
0.8 0.8 0.8

0.6 0.6 0.6

04 (D’ O) 04 (D’ 1) 0.4 (D’ 2)

0.2 0.2 0.2

00 05 10 %o 05 10 %%o 05 1.0
10 1.0 10

0.8 0.8 0.8

0.6 0.6 0.6

04 (1’ D) 04 (1’ 1) 0.4 (1’ 2)

0.2 0.2 0.2

00 05 10 %o 05 10 %%o 05 1.0

The command plt.subplots_adjust() can be used to adjust the spacing between
subplots. We can then use the subplots to plot different figures:

The command plt.subplots_adjust() can be used to adjust the spacing between

subplots. We can then use the subplots to plot different figures:

fig, ax = plt.subplots(2, 2, figsize=(5, 3.5))
fig.subplots _adjust(hspace=0.4, wspace=0.4)

X = np.linspace(0, 10, 1000)

ax[0,0].plot(x, np.sin(x))

ax[0,1].plot(x, np.cos(x))

ax[1,0].plot(x, x**2)

ax[1,0].set _xscale('log') # Set the scale to log scale
ax[1,0].set_yscale('log')

ax[1,1].plot(x, x**2);

1 1
D /\/\ D
1 1
0 5 1
107" 10

0 0 5 10

1 100
10
107" 50
10
0

1

=
n
A
=

In summary, Matplotlib is a data visualization library for creating visualizations in
Python . It provides a wide variety of customizable plots, charts, and graphs, making it a
powerful tool for data analysis and communication. With Matplotlib, we can create line
plots, scatter plots, histograms, and many other types of visualizations. You can customize
the appearance of your plots with a wide range of options, including color schemes, fonts,
axes labels, and annotations. Refer to https://matplotlib.org/cheatsheets/ for more details.

60 / 61

In [34]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display_flashcards(fpath + 'chl@.json')

Functional-style Interface

Next

In []:

	Introductin
	Two interfaces for the matplotlib
	Functional interface
	Object-oriented interface

	Simple plots - 1
	Simple line plots
	Line colors, styles and widths
	Axes limits
	Labeling plots
	Matplotlib tips

	Simple plots - 2
	Simple scatter plots
	Density plots

	Advance plots
	Filling the area between lines
	Plot in polar coordinate

	Multiple subplots

